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What is Probability of Detection (POD) 
and Model Assisted POD (MAPOD)? 

• Probability of detection (POD) of a certain 

discontinuity as a function of some size metric given a 

defined inspection technique and target population. 

 

 

 

 

 

 

• We define “MAPOD” as the collection of approaches 

that use models of inspections as some portion of the 

inputs that are processed to yield an estimate of POD. 
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Model-Assisted POD Model Building Process  
[MIL-HNBK 1823A, Appendix H (2009)] 

Uncertainty 

Propagation 

Model 

Error 

Input Parameter 

Variability 

(Distributions) 

Stochastic 

Models 

Model 

‘Calibration‘ 

 

Revise Model Estimates  

Using Bayesian Methods 

Confidence Bounds 

(Limited Samples) 

Objective:   

Develop Complete Approach to Uncertainty Propagation in MAPOD 



Evaluating Reliability Using Simulated and Empirical Data: 

• To mitigate cost of validation study, one must better assess the  

critical sources of error and variation on reliability performance 

• Hoppe [2009] presented historical case highlighting benefit of improving 

the measurement model through including crack length and depth in fit 

•   

 

•   

 

• Physics-based models provide  

opportunity for reducing 

experimental samples and cost 

 

Mitigating Cost of POD Study 

Objective:  Explore Case Studies to Assess Impact of Measurement  

Model Quality on POD Estimation and Sample Number 

ebb  110
ˆ aa

 ebbb  22110
ˆ aaa

Increase  

Model Accuracy 

 

Reduces  

Residuals in Model Fit 

 

Improves Bounds on  

Parameter Estimates (POD) 

 

Impacts Experimental  

Sampling Requirements   ebb  2110 ,ˆ aafa



‘Progress’ on Model-assisted POD  
Evaluation (Highlights of Talk) 

• Leverage physics-based models in POD evaluation that 

represent key factors in an NDE technique:   

• Present status on models to address  

real cracks in material noise (EC, UT) 

• Assess benefit of more accurate models on  

POD fit and sample requirements 

• Present analysis tools to address propagation 

 of model error, uncertainty in calibration and  

Bayesian refinement [TRI/Austin] 

• Present demonstration of MAPOD protocol  

for SHM (in-situ NDE) validation [Radiance] 

• Address full spectrum of environmental conditions 

• Consider independence of each inspection site 

• Evaluate POD as function of sensor system durability (time)  

 



Demonstration:  Eddy Current Inspection 
of Surface-breaking Cracks in Ti-6Al-4V 

Identify Controlling Factors: 

• Crack Characteristics    

– Length and Depth (aspect ratio) 

– Width (cracks, EDM notches) 

– Stress state across crack face (closure) 

– Crack morphology      

• Material Properties 

– Conductivity  

– Material noise (anisotropy, grain structure) 

– Surface condition (roughness, residual stress, coldwork)   

• Part Geometry (assume locally flat)   

• Probe (frequency fixed at 2.0 MHz) 

– liftoff    

– tilt    

– dimensions, windings (probe to probe variability) 

• Scan resolution (fixed) 

• DAQ hardware (Agilent Impedance Analyzer, Nortec 19eII) 

• Calibration process  - isolate liftoff direction in response 

    - set full screen height for known notch (0.10“) 

• Human data interpretation - use quantitative metrics in evaluation 
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Compare Cracks and EDM Notch Responses: 

• Largest cracks 

very similar in 

reactance (dX) 

• Lower response 

in resistance (dR), 

due to ‘difference’ 

in width of cracks 

and notches  

at surface 

• Differences for 

smallest crack  

(0.040") may  

be due to crack  

closure effect  

and/or uncertainty  

in aspect ratio 

 

 

Comparing Cracks and EDM Notch – 
Experimental and Simulated Data 
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Compare Agilent and Nortec 19eII Responses: 

• Same probe @ 2 MHz was tested over crack specimens [Cherry] 

• Signal to noise much improved for Nortec 19eII wrt impedance results 

• Increase signal to noise due to signal conditioning  

(zero response over specimen and scaling of signal) 

• Background noise seems to be more associated with measurement  

noise than actual material noise (surface roughness, grain noise) 

Comparing Cracks and EDM Notch – 
Experimental and Simulated Data 
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Material noise model (anisotropy, grain structure) can simulate random 

variation of material parameters for a volume grid (flaw region) 

- Example:  randomize  

conductivity of material 

(grains) 

 

 

 

 

 

 

Multiscale flaw model enables simulation of cracks (notches) at boundaries 

(edges, holes) and in the presence of surface roughness, grain structures 

Simulating Cracks in Material Noise 
in VIC-3D©   

[see Murphy et al, “Advances in Developing Multiscale Flaw Models for Eddy-Current NDE”, THUR. 1:30] 

[see Sabbagh et al, “Characterizing Randomly Anisotropic Surfaces”, THUR. 2:00] 



Measurement ‘Model’ and POD Evaluation 

Input Parameters Types: 

• Controlled Parameters, aj (Nj) 

 Flaw size 

 Flaw location 

 Temperature Conditions 

 Ambient noise 

• Uncontrolled Parameters, ak (Nk) 

 Boundary conditions 

 Flaw morphology 
 

Input Parameter Characteristics: 

• Expected Variation Represented 

as a Distributions  (ex. Gaussian, 

Uniform, Gamma, Beta) 

• Uncertainty in Distribution  

Parameters (Not Addressed) 
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Measurement ‘Model’ Fit (mean + error on fit parameters) 

1. Empirical fit (statistical model)  

2. Calibrated numerical model 

o Step 1:  Solve numerical model 

 Data table with interpolation 

 PCM model (Data table fit) 

o Step 2:  Fit model to experimental data 

 Calibration (Bayes, MLE)  

 Transform model (same as ‘Calibration’) 

3. Calibrated numerical model with inverse methods 

(to estimate uncontrolled parameters) 

4. Transfer function approach  

o Empirical fit transformation 

o Calibrated numerical model transformation 

 Measurement 

‘Model’ 

Input 

Parameters 

Call 

Criteria 

POD 

Model 

Level 2:  Uncertainty in Model Parameter Estimate(s)  
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Measurement ‘Model’ and POD Evaluation 
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POD Evaluation Process:  

• Apply threshold for call criteria 

• Use second order probability analysis 

• Use two-level Monte Carlo simulation  

• Sample from Input Parameter Distributions (Level 1)  

• Perform Measurement Model Evaluation and Evaluate 

Single POD Curve 

• Repeat Evaluation for Different Samples due to 

Uncertainty in Model Parameters  

(Level 2) 

• Obtain ‘Set’ of POD Curves (and Evaluate Uncertainty / 

Credibility Bounds on POD Curve) 

• Probability of False Call corresponds with  

POD curve result at a1 = 0. 

 

Measurement ‘Model’ and POD Evaluation 



POD/MAPOD Toolkit (TRI/Austin) -  
Features and Interface Requirements 

Perform POD Assessment and Provide Diagnostic Tools: 
• Define Model Input Parameters 

• Manage Multiple Data Sets 

• Select Model Parameter Fitting Approach 

• Perform POD Assessment and Provide Diagnostic Tools 

 



POD/MAPOD Toolkit (TRI/Austin)- 
Software Architecture   

• POD Toolkit component of NDI Toolbox (open source) 

• POD Toolkit contains code with example case studies, 

and directory structure for code, data and temp. files 

– ex:  hitmiss, ahat_vs_a, ahat_vs_a1a2, bayesmcmc, 

– mapod demos 

• .cfg files:   Define POD/MAPOD Model Structure  

 (Construct model tree) 

• Python code: Adjust interface for Unique POD /  

 MAPOD Evaluation Features 

• R code:   Perform statistical evaluation 

– Optional R link to WinBUGS for Bayesian Analysis 



Input Parameters in Study: 

• a1  = Crack length 

– primary variable for POD 

• a2  = Crack depth (width) 

– dependent variable  

on a1 crack length 

– relationship define by  

function a2(a1) = a4 * a1 

– a4 is the aspect ratio and  

defined as an random  

variable 

• a3  = Liftoff  

– uncontrolled parameter  

during study 

– estimation of liftoff  

could improve POD 

performance (to verify) 
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Simulated POD Studies:   
EC Inspection of Cracks in Ti-6Al-4V 

Input Parameters Distributions 



Input Parameters in Study: 

• a1  = Crack length 

– primary variable for POD 

• a2  = Crack depth (width) 

– dependent variable  

on a1 crack length 

– relationship define by  

function a2(a1) = a4 * a1 

– a4 is the aspect ratio and  

defined as an random  

variable 

• a3  = Liftoff  

– uncontrolled parameter  

during study 

– estimation of liftoff  

could improve POD 

performance (to verify) 

 

EC Response wrt Crack Length 

(variation for a2 and a3 included) 

Simulated POD Studies:   
Input Parameter and Model Response 



Perform POD Assessment and Provide Diagnostic Tools: 

Analysis 0 Analysis 1 Analysis 2 Analysis 3 
survreg() survreg() glm()/MC BayesMCMC 

neglect a2 use a1, a2 use a1, a2 use a1, a2 
B0 -0.05780 -0.05986 -0.05986 -0.05983 
B1 5.39532 2.77503 2.77503 2.77668 
B2 0.00000 6.65178 6.65178 6.64630 

Delta 0.02538 0.02001 0.02001 0.02061 
Threshold 0.10000 0.10000 0.10000 0.10000 

var11 0.00003 0.00002 0.00002 0.00002 
var22 0.00912 0.11971 0.12346 0.12687 
var33 0.00000 0.73494 0.75790 0.78247 
a50 0.02925 0.03204 0.03204 0.03203 
a90 0.03529 0.03719 0.03721 0.03732 

a90/95 0.03616 0.03720 0.03837 0.03733 

Ex:  ahat versus a1 and a2  model fit: 

• Explore: Case study 3:  dep_fixed - POD(a1, a2) generated for varying a1 and for a 

dependent variable a2(a1) using a deterministic model 

– POD plot over a uniform distribution of a1 

– a2 = m a1 where: m is a constant value = 0.33 

• Compare different model fit and 

confidence bounds approaches 

– Analysis 0:  Neglect a2 

– Analysis 1:  Regression fit, 

Delta method for confidence bds 

(ahat versus a1 and a2 ) 

– Analysis 2: Regression fit, 

Monte Carlo for confidence bds 

(ahat versus a1 and a2 ) 

– Analysis 2: Bayesian (MCMC) for 

model fit and confidence bds 

(ahat versus a1 and a2 ) 

• Inclusion of a2 reduces residual variance (Delta)  

• Very little difference observed between the three methods (1-3) for this case 

 

ebbb  22110
ˆ aaa

Simulated POD Studies: 
One vs. Two Parameter Models 



samplesz 100 50 25 12 

max flaw 
size 0.100" 0.100" 0.100" 0.100" 

liftoff unknown unknown unknown unknown 

B0 0.004 0.000 0.006 0.011 

B1 0.952 0.985 0.956 0.915 

Tau (scale) 0.024 0.019 0.020 0.014 

Mu 0.101 0.101 0.098 0.097 

Sigma 0.025 0.019 0.021 0.015 

Threshold 0.100 0.100 0.100 0.100 

a50 0.101 0.101 0.098 0.097 

a90 0.132 0.126 0.125 0.117 

a90/95 0.138 0.133 0.135 0.127 

a90/95 - 
a90 0.006 0.006 0.010 0.010 

var11 9.66E-06 1.05E-05 2.56E-05 2.41E-05 

var12 -7.08E-07 -5.87E-07 -1.88E-06 -1.22E-06 

var22 3.21E-06 3.88E-06 8.97E-06 9.86E-06 

SDa90 0.00362 0.00392 0.00596 0.00610 
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Perform POD Assessment of VIC-3D© Model Fit: 

• Calibrated Physics-based Model: 

• Use mean liftoff from distribution for model 

• Vary Number of Samples (N= 100, 50, 25, and 12) 

Results:  ‘ahat-vs.-a’ analysis much less sensitive  

to sample number used (compared to ‘hit miss’) 

• significant opportunities for sample reduction   

 

  ebb  2110 ,ˆ aafa fit:  N =12 

Simulated POD Studies: Use Physics-
based Model, Vary Sample Number 
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Compare: Simulated (CIVA) and Experimental UT of Ti Lugs 

- Vary crack length, aspect ratio, angle, crack morphology 

Results: 

• Sensitivity to Crack Size, Aspect Ratio, Angle and  

Morphology Demonstrated in Exp. and Simulation 

 

 

Need to Address Morphology for Crack Sizing 

Demonstration:  Ultrasonic Inspection  
of Cracks in Ti-6Al-4V 
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20 20 July 2011 

Probabilistic Reliability Assessment 

for SDS Systems 

Protocol comprises: 

– Procedure for analyzing all pertinent 

characteristics of the SDS system 

• Identify all critical factors that affect  

system performance 

– Multistage approach for system validation 

– Modeling and experimental methodology for 

efficiently addressing a wide range of 

damage and operational conditions 

– Effective methods for evaluating metrics of 

capability and reliability depending on system 

type and function (uncertainty propagation) 

Primary Protocol 

Identify and Evaluate 

Controlling Factors  

Design Multistage 

Validation Study 

Define SHM  

Application 

Perform Multistage 

Validation Study 

Process Data for SHM  

Reliability Assessment 

Economic  

and Probabilistic  

Risk Assessment  

[see papers by Lindgren et al, Aldrin et al, and Medina et al, IWSHM  conf. 2011] 
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Demonstration Study –  

Define SHM System 
SDS System Characteristics: 

• Type:  Direct damage detection using active sensing 

• SHM System Output:  Damage detection call 

• Coverage and Sensor Location:  Semi-global (sub-structure) 

• Measurement Type:  Vibration (low frequency) response 

• Time of Data Acquisition (DAQ):  While aircraft is on the ground 

– Vary temperature (gradients), loading/unloading, boundary cond., fastener torques 

• Location of DAQ Hardware:  Onboard the aircraft 

Structure Characteristics:  Include joints in test article  

• Center joint with sites for simulating damage growth 

• End conditions with optional shims (to change boundary) 

Damage Characteristics: 

• Damage Types (Failure Conditions) to Detect:  (Large) fatigue cracks 

– Approximate crack growth by cutting notches 

– Fastener removal necessary for growing flaw  (must maintain equal torque,  

verify damage metric change not due to changes in boundary conditions) 
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Demonstration Study –  

Identify and Evaluate Controlling Factors 

Primary Protocol SDS System Details: 

 

Identify and Evaluate 

Controlling Factors  

Design Multistage 

Validation Study 

Define SHM  

Application 

Perform Multistage 

Validation Study 

Process Data for SHM  

Reliability Assessment 

Economic  

and Probabilistic  

Risk Assessment  

 

1 

2 5 

 

3 0 

thermocouple 

accelerometer 

4 (in air on top side) 

strain gauge  

1 

2 

3 

4 

2011 Aircraft Airworthiness & Sustainment Conference 88ABW-2011-1894 

Evaluate Potential Contributing Factors  

(Part, Environment, Loading, SHM system) 

Is Variability (Range) and Uncertainty  

(Confidence Bounds) of Factor Known? 

- Prior work 

- Elicit expert opinion 

- Baseline experiments 

- Designed experiments 

- Simulated studies 

- Inverse methods 
 

Approaches Sub-tasks 

Can Influence of the Factor be Evaluated 

Using Simulated and/or Experimentation? 

Assess SHM System Sensitivity to Following Factors: 

A. Loading and Unloading 

B. Fastener Torque 

C. End Condition Variation (Stress) 

D. Temperature Variation and Temperature Gradients 

E. Bond Quality and Sensor Performance 

F. Ambient Noise (from Test Chamber on / off) 

G. Sensitivity to Flaw Growth 
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Evaluate Controlling Factors –  

Temperature Variation and Gradients 
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Temperature Study:  Test article placed in Thermotron temperature chamber  

• Temperature testing performed from -20F to 150F  

• Temperature compensation algorithms are necessary for damage metric 

• Significant temperature gradients also observed during study 

• Some gradients considered extreme (>45F) due to end ‘ thermal sinks’ 

• Need to make estimate of expected gradients ‘in the field’ (10-20F ?) 

 

 

 

Peak temperature difference 

across plate during study  

Temperature response on plate 

during cooling and heating  
Thermocouple locations 
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Observations: 

• Damage grown at 1/16" increments  up to 0.688" at only one site to verify 

sensitivity (thin saw blades provided by NIAR) 

• Simulated flaw growth (SFG) attempted to mimic forcing of plate structure 

without creating damage – no significant effect on damage metric 

• Sensitivity observed to certain  

notch increases, but trend not  

linear 

– sensitive to first notch cut 

– significant drop after fastener 

installed and removed (FIR) 

– Metric grows with larger notches 

• Jump observed after two week 

delay in testing – 'still in noise'  

• Larger cuts will be applied  

for validation studies 

Evaluate Controlling Factors –  

 Sensitivity to Damage 
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Design of Validation Study 

Demonstration Study:   Focused on Single Stage   

• Phase II – Laboratory Testing of  Relevant Structures / Environment  

• Assumption:  Key SDS Factors can be Demonstrated in Single Study 

Factors in Study: 

• Flaw growth (notch): 

– First cut: 0.063", Second to 0.125",  

repeat 0.125" cuts to 1.00" (10 levels) 

– At two fastener locations with relief notches 

• Environmental conditions: (ambient 72F) 

– Temperature variation (32F to 112F) 

– Temperature gradients (<10F)  

– Ambient noise (chamber on / off) 

• Boundary conditions: 

– Loading / unloading mass on structure (10 lb) 

– Fastener removal and reinstall (75 in-lbs +/- 10 in-lbs) – 'simulate maintenance' 

• Sensor conditions:  Evaluate accelerometer bond reinstallation (ref., second) 

 

 

flaw  3 

flaw 2 



26 20 July 2011 

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25
scenario 2-1 (TS BIG)

condition number

d
a
m

a
g
e
 m

e
tr

ic

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

scenario 2-4 (TS UP)

condition number

d
a
m

a
g
e
 m

e
tr

ic

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25
condition 5  (chamber on)

flaw size (inches)

d
a
m

a
g
e
 m

e
tr

ic

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25
scenario 2-8 (TS DOWN)

condition number

d
a
m

a
g
e
 m

e
tr

ic

0 2 4 6 8 10 12

0.05

0.1

0.15

0.2

0.25
scenario 2-10 (TS BIG)

condition number

d
a
m

a
g
e
 m

e
tr

ic

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25
condition 10  (chamber on)

flaw size (inches)

d
a
m

a
g
e
 m

e
tr

ic

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25
scenario 2-10 (TS BIG)

condition number

d
a
m

a
g
e
 m

e
tr

ic

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25
scenario 3-6 (TS UP)

condition number

d
a
m

a
g
e
 m

e
tr

ic

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25
condition 5  (chamber on)

flaw size (inches)

d
a
m

a
g
e
 m

e
tr

ic

0 2 4 6 8 10 12

0.1

0.15

0.2

0.25
scenario 3-9 (TS DOWN)

condition number

d
a
m

a
g
e
 m

e
tr

ic

0 2 4 6 8 10 12
0.05

0.1

0.15

0.2

0.25
scenario 3-10 (TS BIG)

condition number

d
a
m

a
g
e
 m

e
tr

ic

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25
condition 10  (chamber on)

flaw size (inches)

d
a
m

a
g
e
 m

e
tr

ic

Measurement / POD Model 

1) Model Flaw Length and Location:  

• Length:  dm = b0 + b1 * a1 + b2 * a1
2 + b3 * a1

3 

• Sensitivity to location  

must be addressed in model  

[Compare combined and separate  

measurement model fits] 

2) Model for Secondary (Envir.) Variables: 

• Normalized mean temperature (a3), and absolute value |a3| 

• Normalized temperature gradients (a4), 

• Abs. difference between temp. and nearest reference (a5) 

• Ambient noise level (a6), 

3) Model Impact of Random Conditions (Change from Before vs. After): 

• Sensor failure* 

• Sensor bond degradation 

• Sensor replacement 

• Minor fastener loosening 

 

flaw location 2 flaw location 3 

Include in 

measurement 

model /  

regression fit 

(ANOVA) 

• Local maintenance action 

(fasteners uninstall/install) 

• Added mass 

• Structure load / unloading 
 

Perform 

separate 

statistical 

tests for  

significance 
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Measurement / POD Model 
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Input Parameters Types: 

• Controlled Parameters, aj (Nj) 

 Flaw size 

 Flaw location 

 Temperature Conditions 

 Ambient noise 

• Uncontrolled Parameters, ak (Nk) 

 Boundary conditions 

 Flaw morphology 
 

Input Parameter Characteristics: 

• Expected Variation Represented 

as a Distributions  (ex. Gaussian, 

Uniform, Gamma, Beta) 

• Uncertainty in Distribution  

Parameters (Not Addressed) 

 Measurement 

‘Model’ 

Input 

Parameters 

Call 

Criteria 

POD 

Model 

Level 1.  Input Parameter Variability 

Temperature 

(normalized) 

Temperature 

Gradients  

(normalized, 

10F) 
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Measurement / POD Model 

 Measurement 

‘Model’ 

Input 

Parameters 

Call 

Criteria 

POD 

Model 

Fit Measurement ‘Model’ (Using Empirical Data)  

•Flaw length (a1):  dm = b0 + b1 * a1 + b2 * a1
2 + b3 * a1

3 

•Flaw location (a2) 

• Evaluate both ‘combined’ and ‘separate’  

flaw location scenarios fits 

•Normalized mean temperature (a3),  

and absolute value |a3| 

•Normalized temperature gradients (a4), 

•Abs. difference between temp.  

and nearest reference (a5) 

•Ambient noise level (a6), 

•Sensor status (active, failed) 

Level 2:  Uncertainty in Model Parameter Estimate  

Code: data.tmp <- read.csv('analy_ref1_flaw3.csv',header=FALSE) 

x1 <- data.tmp$V1 

x2 <- data.tmp$V2 

x3 <- data.tmp$V3 

x4 <- data.tmp$V4 

x5 <- data.tmp$V5 

x6 <- data.tmp$V6 

x11 <- x1*x1 

x111 <- x1*x11 

y1 <- data.tmp$V14 

frame1 <- data.frame(y=y1, x1=x1, x2=x2, x3=x3, x4=x4, x5=x5, x6=x6, x7 = x11, x8 = 

x111)   

y.vs.x<- lm(formula = y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8, data=frame1) 

summary(y.vs.x) 

Call: lm(formula = y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8, data = frame1) 

Residuals:       Min        1Q    Median        3Q       Max  

-0.035835 -0.007133  0.001119  0.006437  0.026368  

Coefficients:              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.018921   0.003902   4.849  6.8e-06 *** 

x1          -0.081361   0.041766  -1.948  0.05526 .   

x2          -0.003323   0.003465  -0.959  0.34072     

x3           0.010309   0.003690   2.794  0.00665 **  

x4          -0.009321   0.005813  -1.603  0.11315     

x5           0.032816   0.010755   3.051  0.00318 **  

x6           0.005763   0.013645   0.422  0.67402     

x7           0.373822   0.109798   3.405  0.00108 **  

x8          -0.205131   0.072407  -2.833  0.00596 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Diagnostics: Residual standard error: 0.01303 on 73 degrees of freedom 

Multiple R-squared: 0.9133,     Adjusted R-squared: 0.9037  

F-statistic: 96.07 on 8 and 73 DF,  p-value: < 2.2e-16 

Significant 

Factors: 
 x1 <- data.tmp$V1: Flaw size (a1)  (Part of flaw size model) 

 x3 <- data.tmp$V3: Normalized mean temperature (a3) 

 x5 <- data.tmp$V5: Normalized temperature gradients (a4), 

 x7 <- x11 <- x1*x1 Flaw size model term: (a1)
2
 

 x8 <- x111 <- x1*x11 Flaw size model term: (a1)
3
 

 

Regression Analysis Example (R) 
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Measurement / POD Model 

 Measurement 

‘Model’ 

Input 

Parameters 

Call 

Criteria 

POD 

Model 

POD Evaluation Process:  

•Apply threshold for call criteria (dm > 0.06) 

•Use second order probability analysis 

• Use two-level Monte Carlo simulation  

• Sample from Input Parameter 

Distributions (Level 1)  

• Perform Measurement Model Evaluation 

and Estimate Single POD Curve 

• Repeat Evaluation for Different Samples due 

to Uncertainty in Model Parameters (Level 2) 

•Obtain ‘Set’ of POD Curves (Uncertainty / Credibility 

Bounds on POD Curve) 

•Probability of False Call corresponds with  

POD curve result at a1 = 0. 
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POD Results:  Dependency on Flaw Location 

 

 

 

 

 

 
 

Can Improve POD by Choosing Optimal Sensor Configuration:  
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POD Results –  

Sensitivity to Flaw Location  

Flaw 3 only Flaw 2 only Flaw 2 and 3 

 

1 

2 3 

 

5 

0 
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side) 
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Flaw 2 only 

Only use  

damage metric 

for 

accelerometer 

#6 

(with reference  

#1) 
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POD Results –  

Impact of Sensor Durability 

POD Evaluation Must Address Known Sensor Durability Issues: 

• Issue demonstrated by percent of C–17 in-service strain gauge failures 

as a function of time [Ware et al]  

• Bathtub Curve Model [Meeker and Escobar]   

 

 

 

 
 

Evaluation of Impact of Sensor Failure: 

• Evaluate changes in POD due  

to random sensor failure over time 

• Explore failure of two sensors (25%)  

over first six years of service life 

• Distributions of Time to Failure 

Considered in Evaluation 
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POD Results –  

Impact of Sensor Durability 

• Sensor Scenarios with  

Corresponding Changes in  

POD and False Call Rate:  
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Approach 1:  (Best Sensitivity) 

- Use accel. #1 as reference 

- Use accel. #6 as source 
 

Approach 2:  (Accel.#6 Failure) 

- Use accel. #1 as reference 

- Use median of active sensors 
 

Approach 3:  (Accel.#1 Failure) 

- Use accel. #8 as reference 

- Use median of active sensors 
 

Approach 4:  (Accel.#8 Failure) 

- Use accel. #3 as reference 

- Use median of active sensors 
 

  

Scenarios  

Addressing 

Sensor Failure 
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POD Results –  

Impact of Sensor Durability 

Evaluation of Impact of Sensor Failure: 

• Evaluate changes in POD due  

to random sensor failures over time 

• Distributions of Time to Failure 

Considered in Evaluation 

Results:  Mean expected POD and  

POFC at a flaw size of 1.0 in  

as a function of time 
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flaw2
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Summary and Conclusions 

• Progress on MAPOD for NDE and SHM: 

– Protocol: NDE  MH1823A; SHM  Aldrin et al 2011 

– Tools: Validated Models, MAPOD Toolkit [TRI/Austin] 

• Key Insight from EC / UT MAPOD Demonstrations 

– Models in evaluation has potential to impact sample requirements 

– Crack morphology is a significant factor in NDE measurements 

– Challenges exist to quantify complete source of noise, error 

• Identify limits on purely models assisted approaches 

• Key Insight from SHM MAPOD Demonstration 

– Must ensure changes in SHM metric are truly damage growth 

– Certain flaw locations may require separate POD models  

– Feasible to evaluate impact of sensor failures on performance 

– Need MAPOD approach to cover all damage scenarios, over time 

• Need better understanding of variabilities through 

empirical data collection, forward and inverse modeling 
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Future Directions in MAPOD (1) 

I.  Modeling and Simulation: 

• Model Benchmarking and Validation 

– Error analysis for uncertainty propagation 

– Provide insight to modeling gaps and needs 

• Forward Model Development Efforts (UT, EC, IR) 

– Address gaps through development programs 

– Improve simulation time (leverage parallel processing/GPUs) 

• Stochastic Modeling  

– Probabilistic Collocation Method 

– Many Unknowns (2D/3D Problems) 

 
 



Future Directions in MAPOD (2) 

II.  Analysis: 

• Address Variability and Uncertainty in Input Parameters 

– Statistical Uncertainty Evaluation and Propagation 

– Use of Inverse Methods to Quantify Variability and Reduce 

Uncertainty 

• Develop Comprehensive Approach to A-hat vs A Analysis 

Using Different Model Types  

– Empirical fit (statistical model)  

– Calibrated numerical model 

– Calibrated numerical model with inverse methods 

(to estimate uncontrolled parameters) 

– Transfer function approach 

• Second Order Probability Analysis 

• Merging Empirical and Simulated Results  

(Bayesian Methods, Diagnostics) 



Future Directions in MAPOD (3) 

III.  Extensions and Validation of Process 

• Model-assisted Measurement System Characterization 

– Validation of Localization and Sizing Estimates 

– Phase I SBIR 2011-12 Efforts 

• Comprehensive Validation Studies of MAPOD Process 

 


