Review of Demonstration Efforts for Model Assisted POD

MAPOD Working Group meeting 20 April 2007 Palm Springs, CA

Outline

- Intergraph program
- NIAR program
- etc.

Intergraph Program

• Review and categorization of inspections in C-130 Technical Orders (TO's).

• Work with depot to obtain service-retired parts of interest.

C-130 Rainbow Fitting

C-130 Rainbow Fitting

Rainbow Fitting

• A C-130 aircraft rainbow fitting was sent to AFRL in December 2006

Rainbow Fitting

C-5 Horizontal Stabilizer

Horizontal Tie Box Fitting

Data Collection for Model Creation

- Reviewed aircraft specific Nondestructive Inspection Tech Orders
 - Found no 2nd layer eddy current inspections for the C-5, C-130 or F-15 aircraft
 - Created matrix to establish groupings for eddy current inspections
 - Based on physical access to the inspection area
 - Based on whether inspection is routinely accomplished
 - Based on availability of aircraft parts

Groupings met from these 2 parts

GROUPINGS

Coil Sideways
Above Head
Radius
Eye Level
Around Obstacles
Stooping/Kneeling
Coil Towards Inspector
Flush Fastener
Blind Scan
Long Reach
Inside Wing

TRI/Austin Work

• Basic assumption:

 $\ln(\text{signal}) = \beta_0 + \beta_1 \ln(\text{crack size}) + \varepsilon$

- What is ε?
 - all the variabilities
 - instrumentation
 - human factors
 - crack to crack
 - etc...

Residuals

Assumption of method is that ε is a random variable, zero mean, normally distributed

We often assume that the components of ε are independent variables

– This is important, just ask Chuck.

• We believe that these are hardest to deal with.

In a perfect world...

If there was no ε, we would not need 60 samples to define a linear relationship!

- If we could easily model nefarious concepts like $\varepsilon_{humanfactors}$, wouldn't need POD studies.
- ... but we aren't there yet.

XFN

- Transfer from EDM to cracks, from POD specimens to service materials, requires the transfer in ε.
 - I can change the slope of the linear fit with instrumentation gain and offset.
 - Underestimate ε = unconservative POD.
- FOR EXAMPLE Good hole quality in machined POD specimens likely to be unrepresentative of holes that are inspected in service.
- (see DSTO work presented this week)

FMA

- Clear value of model is ability to simulate variations in parameters without extreme numbers of test specimens.
 - FOR EXAMPLE: probe tilt, conductivity, crack location/orientation
- Thus could theoretically model many components of ε.
- (see AFRL work)

Efforts underway on ε

 Review available historical data that contains estimates of ε, experimental designs that allow breakdown of this.

• GOAL instead of tables of NDT detection threshold values, tables of ε.

NIAR Efforts

• Bolt Hole Eddy Current reliability

- directed towards A-10

Factors - Discontinuity variables - Notches

factor	type	note
wire diameter	controlled	do not study, fix a single diameter
heat affected zone	uncontrolled	hold constant by manufacturing in a controlled procedure
tool condition	uncontrolled	hold constant by manufacturing in a controlled procedure
process variables - wire feed, speed	uncontrolled	hold constant by manufacturing in a controlled procedure
notch shape	controlled	based on expected crack shape
tool materials and dimensions	uncontrolled	hold constant by manufacturing in a controlled procedure

Factors - Discontinuity variables - Cracks

factor	type	note
load spectrum	fixed	constant amplitude, amplitude to be defined from
		A-10 spectrum (lower wing skin)
closure	fixed	this is a function of loads used to grow crack
contact asperities,	fixed	this is a function of material, loads used to grow
roughness		crack
morphology (shape,	controlled	this is a function of loads used to grow crack
orientation, depth,		
length)		
nucleation feature	fixed	not feasible to replicate fretting / corrosion /
		fatigue nucleation mechanisms, use EDM starter
mode	fixed	this is a function of loads used to grow crack
- I, II, III,		
growth mechanism	fixed	only fatigue
– fatigue		
– corrosion/fatigue		
– corrosion		

Factors - Material

factor	type	note
materials properties	fixed	all cracks to be in 0.250" thick Al 7075-T6

Factors - Geometry

factor	type	note
hole shape	fixed	 all holes to be 0.500" diameter, as machined quality fixed for baseline set, vary for separate study
 hole quality cleanliness machining damage fretting, corrosion damage 	fixed	 as machined fixed for baseline set, vary for separate study
crack location in stackup	controlled	• vary as desired 1 st layer vs 2 nd layer vs
crack location in hole	controlled	 separate specimens sets with origins at bore and at faying surface (see figure below, Type C and Type A)

Factors - Geometry

Factors - System/Operator Issues

• Generic set of specimens to be used for multiple trials

factor	type	note
NDI equipment	fixed	- as defined in T.O., must control through
		calibration
NDI technique	fixed	- as defined in T.O., must control through
– scan plan		calibration
– decision threshold		- record signal magnitudes

Drill / ream holes to final size. Measure crack sizes.

EDM slots using minimum diameter wire. Generate fatigue cracks of "appropriate size".

-final fatigue crack

Drill / ream holes to final size. Measure crack sizes.

Summary of A-10 specimens

- Four layer specimen (3 aluminum, 1 steel) of 0.25-in plate with 0.090-in to 0.125-in aluminum shim
- Six 0.50-in diameter holes per specimen
- Maximum of two cracks per hole (fore and aft)

Summary of A-10 specimens

- Crack Population
 - Two to three cracks per specimen with no cracks in some specimens
 - distribute sizes assuming 90/95 crack size of 0.030-in
 - Sixty corner cracks, Sixty midbore cracks in aluminum plates

Summary of A-10 specimens

- Manufacture of Specimen
 - Only drill the holes with cracks before fatiguing
 - Drill the uncracked holes after fatiguing
 - Machine matching holes in each layer of the specimen
 - Gives ability to move cracks in depth, change the stackup
- Number of Specimens
 - Fifty total specimens with cracks 20 with 3 cracks, 30 with 2 cracks
 - Three additional specimens with EDM defects
 - Additional cracked specimens for fractographic analysis of crack shape and size

