Model-Assisted POD for Ultrasonic Detection of Cracks at Fastener Holes Cayt Harding, Geoff Hugo, Sue Bowles Defence Science and Technology Organisation Australia

Overview

- F-111 Lower Wing Skin Inspections
- Requirements for POD validation
- Application of POD modelling to F-111 Lower Wing Skin

F-111 Lower Wing Skin

Australian Government Department of Defence Defence Science and Technology Organisation

F-111

- 1960's aircraft
- RAAF sole operator of type
- Catastrophic failure during wing fatigue life extension test
 - Crack initiated from taperlok fastener hole
 - Previously uninspected location
 - Possible widespread build quality problem
 - Interim safelife imposed pending introduction of safety-by-inspection

Automated UT for F-111 Lower Wing Skin

Australian Government Department of Defence Defence Science and Technology Organisation

Inspecting for cracks at fastener holes

- 45° shear wave UT C-Scan
- SAIC Ultra Image International Ultraspect-MP Scanning system
- 5MHz 1.5 inch spherical focus immersion transducers

Y 0.7-A 0.6-X 0.5-i 0.4-s 0.3-

0,2-0.1--0.0-

-0.1--0.2 --0.3 --0.4 --0.5 _

3

Zoom

3:0.33

0.0-0.1-

0,2-

0.3-

0.4-0.5

0.6-

0.7

12.0

Master X-axis:

12.0

File Channel Gate C-Scan B-Scan A-Scan Tools Display Settings

File: A1543AAS045-030scan2 Exam Date: 01/31/2003 Time: 02:32 - 02:43 WP: N/A Channel: 2 Gate: SW 1 Mode: Max Video Mode: Full Video Filter: 2 Gain: 47.0 dB Dac: OFF Offset: 0.0 db Pulser Voltage: 400

Master X-axis: 15,720, Y Axis: 0,160

13.0

15,720

_ 🗗 × Help

100 -

90 -

80 -

70 -

60 -50 -40 · 30 -20 -10-

▲ B-scan (vertical cross-section through data)

Challenges of F-111 Wing Inspection

- New technology in RAAF
- Flight critical structure
- Fastener removal to confirm indications using bolt-hole eddy-current not viable
- Formal POD assessment sought by RAAF Aircraft Structural Integrity Unit

F-111 Lower Wing Skin

Australian Government Department of Defence Defence Science and Technology Organisation

Complex Geometry

- Skin thickness variation from 0.2" to 1.3" over whole inspection region
- Fuel transfer grooves in skin and spar
- Spar web stiffeners

Example of inboard region of F-111 wing skin

Australian Government Department of Defence Defence Science and Technology Organisation

Requirements for POD validation

POD for Aircraft Structural Integrity

Australian Government Department of Defence Defence Science and Technology Organisation

Inspection intervals are based on the largest defect that might be missed by an inspection method, a_{NDI} .

What should *a_{NDI}* be?

Australian Government Department of Defence Defence Science and Technology Organisation

Under US Joint Service Specification Guide for Aircraft Structures (JSSG-2006):

- a_{NDI} = a_{90/95} 90% POD demonstrated with 95% statistical confidence (JSSG-2006, paragraph 4.12.1.a Verification Guidance)
- Same as superceded MIL-A-83444 requirement for F-111

Current Options for *a_{NDI}* **Certification**

Australian Government Department of Defence Defence Science and Technology Organisation

Two choices, no middle ground.

- low cost
- routinely available
- limited reliability consideration

- expensive (specimens & inspection time)
- outcome applicable to specific procedure only
- comprehensive reliability measurement

POD Modelling – Filling the Gap

Biggest payoff for ASI is improving low accuracy end!

- Reduced risk of structural failure
- Reduced incidence of over inspection

Options for POD Modelling

Australian Government Department of Defence Defence Science and Technology Organisation

Two approaches identified by Model-Assisted POD Working Group:

Transfer Function Approach

- 3 Specimen types
 - Artificial defects in complex geometry
 - Representative defects in simple geometry
 - Artificial defects in simple geometry
- POD trial on complex geometry
- Regression analysis to adjust for representative defects

Full Model-Assisted Approach

- Identify factors
- Develop and validate model
- Simulation tool to predict response to well-understood factors
- Experimental assessment for uncontrolled or un-modelled factors
- Compute POD

Australian Government Department of Defence Defence Science and Technology Organisation

Application of POD modelling to F-111 Lower Wing Skin

POD Validation for F-111 Lower Wing Skin

Defect Types

Empirical POD Trial on Retired F-111 Wing

- >100 EDM notches inserted in bore of fastener holes across 2 wings
 - Range of types, sizes and locations
- 4 level 2 NDI Technicians
 - Training recently completed
 - No previous experience interpreting full-waveform c-scan data
- Treat data acquisition and data interpretation phases separately

Empirical POD Trial on Retired Wing

Australian Government Department of Defence Defence Science and Technology Organisation

Mid-bore Centre

0.2

2

0 /

1

4

5

3

Crack Length (mm)

Preliminary results for EDM notches

Corner	0.5	0.7
Mid-bore centre	1.7	2.5
Mid-bore top	3.3	Not achieved

Fatigue Cracks in Laboratory Specimens

Fatigue crack specimens

- 2 thicknesses (0.5" & 1.0")
- 4 defect types
 - Corner, mid-bore top, mid-bore centre, top corner
- Representative spectrum loading
- Two specimens contain EDM notches

Experimental program

- Metrics for ultrasonic response
 - Area
 - Amplitude
- Measured under varying load
 - Crack closure effects

- UT response for corner EDM notches in specimens
 - Corner reflections
 - 0.5" specimen thickness

- UT response from mid-bore EDM notches
 - Direct reflection
 - Area measured at lower threshold

- UT response from corner fatigue cracks and EDM notches
 - Length of cracks measured by UT with specimens under load to fully open cracks
 - Cracks show reduced area and amplitude compared to EDM notches

Australian Government Department of Defence Defence Science and Technology Organisation

Effect of applied stress on UT

Cracking at Fuel Transfer Groove in Wing Skin

Australian Government Department of Defence Defence Science and Technology Organisation

Specimen containing real crack at fuel transfer groove inspected by 45° shear wave UT with and without applied load

Applied stress 120MPa (~50%MSS)

Amplitude C-scan

No applied load

Amplitude C-scan

Cracking at Fuel Transfer Groove

Australian Government Department of Defence Defence Science and Technology Organisation

Larger crack at fuel transfer groove, with and without fuel ingress

No applied load Dry crack

Amplitude C-scan

No applied load With fuel ingress

Amplitude C-scan

Conclusions

- Accurate assessment of POD for F-111 lower wing skin inspection is required for continued operation of RAAF F-111 fleet through to planned withdrawal date
- Full POD trial on representative defects is not feasible for this application
- Transfer function approach to POD modelling will be applied
- Significant difference between response from EDM notches c.f. cracks
- Crack closure is a significant factor

