Role of Physics-Based Models in Cracks Versus Notch Response Determination

R. Bruce Thompson Center for Nondestructive Evaluation Iowa State University

Outline

- Different Types of Cracks
- Their Effects on NDE Measurements
- Possible Model-Assisted Approach to Account for Crack Versus Notch Effects

Notch

Cracks

Ideal Mathematical Crack

Morphology Effects

Electrical/Mechanical Contact Effects

Material Mechanisms

- Growth along grain boundaries
- Non-uniform residual stresses

- Oxides and other debris
- Contacting asperities
- Sheared faces

Outline

- Different Types of Cracks
- Their Effects on NDE Measurements
- Possible Model-Assisted Approach to Account for Crack Versus Notch Effects

Ultrasonics

Response as Compared to Notch Response

Measurement	Ideal Crack	Morphology Effects	Mechanical Contact Effects
Specular	Equivalent	Reduced Due to	Reduced Due to
Reflection		Interference	Transmission
Tip Diffraction	Different; Often	Different; Often	Different; Often
	Less	Less	less
Through Transmission	Equivalent	Equivalent	Increased

Eddy Currents

General Comments

- Electrical contacts (bridging) will always have an effect if currents, following along crack faces, are "short circuited"
- □ Morphology effects are less significant than for UT
- Open cracks have greater "inductance" than ideal mathematical crack because of stored energy in magnetic fields
- □ The difference increases with frequency
- In the impedance plane, this is similar to, and hard to differentiate from, lift-off effect

Notch vs. Crack: EC Model

Notch-Crack difference appears

- □ Strongly in impedance amplitude
- Weakly in vertical components (when lift-off is horizontal)
- Reason
 - The volume effects behave similarly to the lift-off effect
 - More volume energy = higher reactance
 - Less material = lower resistance

Example Calculation

Model Parameters
Notch /ength×depth×width
/=1mm, d=0.5mm
w=0.0, 0.05, 0.1mm
Solenoid coil
/D=1.07mm, OD=2.62mm
L=2.79mm
Lift off=0.73mm
F=100kHz

- Part = a plate
 - □ Inconel 600 (1.02x10⁶ S/m)
 - □ 1.27mm thick

- In two configurations
 - □ "ID" (same side)
 - "OD" (opposite side)

Results

- ~20% increase in amplitude with 10% opening (i.e. *w/l*=0.1)
- Increase in the lift-off direction
- Vertical components are insensitive to notch openings.

MAPOD 2/05 Cracks vs Notch

Eddy Currents

Measurement	Ideal crack response as compared to notch response	
Absolute coil	Difference often small	
 Lift-off rotated to horizontal "Response" taken as vertical response 	Ideal crack can have greater or less response	
Differential coil	Significant Difference	
 "Response" taken as magnitude of impedance change 	$\left \Delta Z_{NOTCH}\right > \left \Delta Z_{CRACK}\right $	

Internal Defects

- Similar issues exist for internal defect
- X-ray techniques as well as ultrasonic and eddy current techniques must be considered

Outline

- Different Types of Cracks
- Their Effects on NDE Measurements
- Possible Model-Assisted Approach to Account for Crack Versus Notch Effects

Suggested Strategy

- Use physics-based models to correct notch data for difference between ideal cracks and notches
- Create database of deviations of responses real cracks from expectations for ideal cracks
 - Include salient materials variables specifying growth factors controlling morphology
 - HCF vs LCF
 - Closure
 - Etc.
- Long term goal
 - Develop "knock down factors" that can be confidentially used in new studies

Questions

- Is there quantitative data for non-bridged cracks in slots or bolt holes in engines or faster holes in lap joints, that could be used to validate theories?
- How would we determine depths independently?