Three-Point Calibration --- Possible roles played by models

N. Nakagawa Center for NDE, Iowa State University

nakagawa@iastate.edu

Outline

Demonstrated role of models

- To select calibration notch sizes appropriately
- Have shown that CNDE EC model provides help.
 - B.P.C. Rao and NN, Review of QNDE, Golden, CO
 - B.P.C. Rao, N. Nakagawa, and L. Brasche, WCNDT, Montreal
- Brief Comment on Possible Advanced Role
 - To ensure the "<a> vs. a" relation consistent/repeatable
 - W. Rummel, Review of QNDE, Golden, CO
 - Model scope/capability may require extension

CNDE EC Models -- Scope

Notch size selection via model prediction

Bhagi Purna Chandra Rao

N. Nakagawa

Model Study of 3pt Cal. -- Motivation

- <u>SAE ARP* Committee-K</u> is preparing a standard document
 - EDDY CURRENT "PENCIL" PROBE SURFACE CRACK DETECTION IN AEROSPACE STRUCTURES (doc)

*Society of Automotive Engineering (SAE), Aerospace Recommended Practice (ARP)

- RECOMMENDED PRACTICE covers ranges of
 - Materials (σ , 1% to 62% IACS)
 - Instruments (CRT, Meter, Time-base etc.)
 - Probes (Absolute, Differential)
 - Excitation frequencies $(3500/\sigma \text{ to } 18500/\sigma \text{ kHz})$
 - Test situations (Manufacturing, Service, Painted etc.)
- Calibration notches

0.2mm – 0.5mm – 1mm D, 25mm L

0.37mm - 0.75 mm - 1.5 mm, 2-to-1

 \odot

 \odot

Objective/Approach

- Objective
 - To provide SAE Committee-K with data to assist in the three-point calibration standard development

- Approach
 - Simulation by numerical model (inexpensive)
 - Predict probe signals from 3 calibration notches, for a ranges of materials, probes, and frequencies
 - Experimental validation (few selected cases)
 - Analyze specific questions

Specs vs. Model Study Matrix

Other Parameters in the Model

Material & Notch

Thickness:	3 mm	Lift-off:	0.2 mm			
Notch:	9x0.2, 0.5 and 1 mm	Core μ _r :	200			
Absolute Probe						
Coil ID:	1.5 mm	Coil OD:	1.8 mm			
Coil length:	0.3 mm	Coil height:	1.0 mm			
Core ID:	1.4 mm	Core height:	2 mm			
Differential Probe						
Coil ID:	1.5 mm	Coil OD:	1.8 mm			
Coil length:	0.15 mm	Coil height:	1.0 mm			
Split ID:	1.4 mm	Height:	2 mm			

Split Cores Gap: 0.3 mm

Predicted Signal Ranges vs. Frequency

Predicted Signal Ranges vs. Notch Depth

Measured Signal Ranges vs. Notch Depth

'Expected Amplitude Range' for 1st Set predicted for Absolute Probes

Snapshot of Model Predictions

	Absolute Probe		Differential Probe	
BEM Model	Expected Range		Expected Range	
Predicted Results*	0.2 mm Notch	1.0 mm Notch	0.2 mm Notch	1.0 mm Notch
V. Amplitude	22 <u>+</u> 8%	156 <u>+</u> 25%	19 <u>+</u> 6%	153 <u>+</u> 23%
Phase Angle	35 <u>+</u> 2%	70 <u>+</u> 2%	35 <u>+</u> 1%	70 <u>+</u> 1%
H. Amplitude	61 <u>+</u> 23%	106 <u>+</u> 18%	56 <u>+</u> 18%	116 <u>+</u> 16%

*0.5 mm deep reference notch amplitude is 100% and phase angle is 45°

Second set of Notches Analysis

2nd Set of Notches; Proposed Revision

Summary of Notch Size Selection Study

- Three-point calibration standard procedure analyzed using BEM numerical simulations.
- Material conductivity and test frequency influence eddy current signal response in an apparently non-linear manner as also validated experimentally.
- 'Expected Ranges' determined for amplitudes and phase angle from lift-off.
- Quantitatively established that vertical amplitude can be reliably used for all materials and display types covered in the recommended procedure.
- Modifications proposed for second set of notches based on the model predictions

Comment on Possible Need for Non-Linear Models

Consideration to "<a> vs. a" Relation

Predictions for "Power Law" $\Delta Z = Ka^n$

Possible Source of Slope Variation

 Observed setup dependence of the slope "n" is likely due to <u>non-linear</u> effects

$$\ln \Delta V = A + \underline{\underline{n}} \ln a$$

- Origin of non-linearity?
 - Cables/connectors themselves are passive and highly linear
 - Ferrite cores may lead to non-linear behaviors
 - Voltage-driven electronics → The longer the cable, the lower the drive voltage applied to the probe element.
 - Experimental tests to be performed.
 - Change cable lengths
 - Change drive voltage; use current drive

Conclusions

- A role of models
 - Have demonstrated that CNDE EC model provides help in selecting 3pt calibration notch sizes properly.
 - The 2nd set of the selection in the draft
 "Committee K" document may need revision.

- Toward Advanced Role
 - Need to examine the ferrite non-linearity.

Ľ

