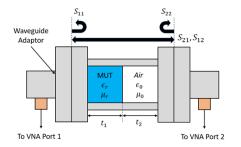
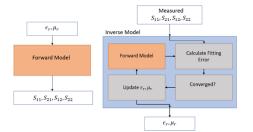
Uncertainty in Material Characterization Using the Hessian and Filled Waveguide Method


Trent Moritz, Matthew Dvorsky, and M. T. Al Qaseer, Electrical and Computer Engineering

Center for Nondestructive Evaluation - CNDE


Objective: Develop a method to predict uncertainty in material properties (ϵ_r , μ_r , and thickness) that are calculated using microwave material characterization technique.

Background

- Material properties in the microwave regime are commonly modeled using relative complex permittivity $(\epsilon_r = \epsilon'_r j\epsilon_r'')$ and relative complex permeability $(\mu_r = \mu'_r j\mu_r'')$.
- The filled waveguide technique is commonly used for microwave material characterization.

• The material properties are obtained from measured S-Parameters using a model of the filled waveguide and an optimization algorithm.

The filled waveguide is modeled using ABCD parameters which can be cascaded for an arbitrary number of layers.

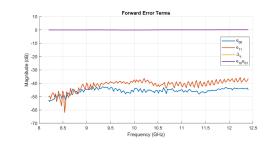
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}_{i} = \begin{bmatrix} \cosh(\gamma_{i}t_{i}) & Z_{i}sinh(\gamma_{i}t_{i}) \\ \frac{1}{Z_{i}}sinh(\gamma_{i}t_{i}) & \cosh(\gamma_{i}t_{i}) \end{bmatrix}$$
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \prod_{i} \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{i}$$

Formulation

• The Jacobian of the forward model represents changes in the S-parameters relative to changes in complex permittivity (or permeability) when evaluated at the material property values of interest. Using the definition of the Jacobian, the Hessian can be calculated as:

 $H_{fwd} = J^T J$

 To evaluate the uncertainty in the material properties, the Hessian for the inverse system is evaluated as follows:

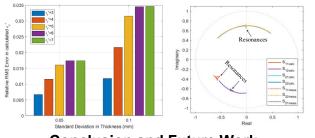

$$\mathbf{H}_{\mathrm{inv}} = (J^T J)^{-1}$$

• An estimate of the uncertainty can then be found using the Hessian when scaled by the variance of the measured S-Parameters.

$$U = \sqrt{H_{inv} \cdot (S - Parameter \, Variance)}$$

S-Parameter Variance Sources

- Calibration error
- Sample inhomogeneity
- Flange misalignment
- Thickness variation
- Imperfect connectors
- Sample placement
- The calibration error was experimentally obtained by performing measurements of the calibration standards, using two separate calibration methods.



<u>Measurement</u>

- Performed filled waveguide measurements on several materials with well known material properties to evaluate the model.
- After characterizing the materials, the difference between the calculated and listed material properties were compared to the uncertainty value obtained from the model.

<u>Material</u>	Thickness (mm)	<u>Listed</u> <u>Permittivity</u>	<u>Calculated</u> <u>Permittivity</u>	<u>Calculated</u> <u>Uncertainty</u>	<u>Characterization</u> <u>Error</u>
Air	7.5	1.00-0j	1.006-j0.00	±0.0106±j0.0106	-0.006-j0.0
Rogers 3003	1.52	3.00-j0.033	2.968-j0.009	±0.0586±j0.0586	+0.032-j0.024
Rogers 3006	1.28	6.15-j0.012	7.005-j0.033	±0.1108±j0.1108	-0.855+j0.021
Rogers 3010	1.26	10.2-j0.02	10.975-j0.063	±0.2138±j0.2138	-0.775+j0.043
Teflon 1	3.11	2.02-j0.001	1.950-j0.005	±0.031±j0.0310	+0.07+j0.004
Teflon 2	6.78	2.02-j0.001	1.996-j0.007	±0.0257±j0.0257	+0.024+j0.006

- The S-Parameter Variance used in calculating the uncertainty did not include the effect of several sources of variance.
- For example, uncertainty in the measured sample thickness can result in additional uncertainty in the material properties.
- The current forward model is unable to model the resonances that arise from imperfect measurement fixture.

Conclusion and Future Work

- The calculated uncertainty values help give an estimate of the uncertainty in the calculated parameters using the inverse model.
- This uncertainty estimate is not entirely accurate as it does not yet account for several potential errors in the measurements.
- Future work will focus on including all possible sources of error in addition to applying this method to other material characterization techniques.

