Orthogonally-Coded Array for High-Speed Synthetic Aperture Radar (SAR) Imaging

M. Vaccaro, M. T. Al Qaseer, and R. Zoughi, Electrical and Computer Engineering

Center for Nondestructive Evaluation - CNDE

Objective: To improve the quality of synthetic aperture radar (SAR) images, and reduce measurement time through the implementation of orthogonal coding.

Overview

- SAR imaging involves the coherent summation of backpropagated microwave measurements made from many locations and over a band of frequencies.
- Traditional SAR imaging scans one antenna, or electronically switches between many antennas, one-by-one, to transmit and receive microwave signals from many locations.

Proposed Approach

- Create an antenna array, operating at Ka-Band (26.5-40 GHz), that simultaneously transmits and receives with all antennas in order to collect more data.
- Each transmitting antenna must be encoded by a unique, orthogonal binary code, which is also known to the receiver.
- The receiver then decodes the received signal by correlating it with the codes for each transmitting antenna.

Future Work

- Make measurements on the implemented system.
- Investigate the optimal coding sequences for speed and noise.

Examples of binary orthogonal codes:

- Equivalent to switching antennas

\[
\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\]

- Enables simultaneous transmission, with bits represented by phase shifts

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 \\
\end{bmatrix}
\]

Antenna Design

- An antenna was designed and tested for this system.
- Measurements and simulations show antenna is suitable for imaging purposes.

Simulation Results

- Modeling shows improvement in image signal-to-noise ratio (SNR) as the number of simultaneously transmitting antennas increases.