Nonlinear ultrasonic evaluation of contaminants mixed into epoxy-adhesive in manufacturing

Do-Kyung (David) Pyun, Lucas W. Koester, Daniel J. Barnard, and Leonard J. Bond

Adhesive joints
- Joining similar or dissimilar materials with a non-metallic material (adhesive)
 • Advantages
 ✓ Uniform stress distribution
 ✓ Lower weight
 ✓ Improved fatigue strength
 ✓ Minimized corrosive damage
 ✓ Design flexibility
- Joint forces
 Adhesive
 Ex.: Epoxy

Motivation
- Micro-scale defects in adhesive joints
 - Threat on the structural integrity of adhesive joints
 - Preventing the increase of application in adhesive joints
 - Limitations of conventional NDE for detection of micro-scale defects
 - Contaminant mixed poor cohesion remained as a characterization challenging for NDE

Objective
- Determine the effect of contaminant on mechanical and thermal properties of epoxy-adhesive using a nonlinear ultrasonic technique

Second harmonic generation (SHG)
- Objective
 • Determine the effect of contaminant on mechanical and thermal properties of epoxy-adhesive using a nonlinear ultrasonic technique

SHG system
- Measure current signals of A_1' and A_2'

Epoxy-adhesive samples
- Pure
- 0.5%
- 1.0%
- 1.5%
- Contaminant

Other measurements
- Rockwell hardness testing → Mechanical hardness
- Differential scanning calorimetry (DSC) → Curing reaction

Comparison of ultrasonic parameters and mechanical hardness
- Correlation between β' and material properties
 - T_g (glass transition temp.)
 - Contaminant can be miscible with epoxy
 - Contaminant lowers cross-linking density
 - Contaminant reduces curing reaction
 - Nonlinearity parameter
 - Contaminant causes incomplete curing
 - Incomplete curing increases impurities
 - Impurities induce micro-structural change
 - Nonlinear parameter increased

Conclusions
- Effect of contaminant on mechanical and thermal properties of epoxy-adhesive was investigated with ultrasonic parameters
- The SHG method using the nonlinearity parameter (β') has potential for use in a quantitative method for evaluation of bond quality of epoxy-adhesive

Acknowledgements
Do-Kyung (David) Pyun is the recipient of the R. Bruce Thompson Graduate Fellowship in CNDE and wishes to express his gratitude for the opportunity facilitated by this fellowship to perform research in the NDE field.

Spring 2022 IAB Meeting